Executive Leadership Team endorsed a policy working group to develop a wage replacement policy. The AHS Living Organ Donor Wage Replacement Policy became effective January 21, 2019, which provides full wage replacement for eligible AHS employees during post-procedure recovery of 12 weeks (organ donation) or 7 days (surgical bone marrow donation).

**Results:** Based on the 2018 average AHS annual salary of $90,000 and assuming a 12-week convalescence, estimates predicted wage replacement costs of $20,769 per living organ donated by an employee. Based on the living kidney donation rate in Alberta (2011-2016) and the number of eligible AHS Employees (2018), it was predicted 3 of AHS’ 100,000 employees would serve as living organ donors per year. Predicted annual organizational cost: $62,307.

Between January 19, 2019 and November 1, 2020, the number of employees accessing the policy exceeded the initial predictions of 3 AHS staff (unable to report specific dollar savings vs. number of staff given N<10), even in light of the COVID-19 pandemic where most LDLTs were postponed for several months ending June 2020.

**Conclusions:** This policy was successfully implemented to limit AHS employees’ loss of income during post-operative recovery from living organ and surgical bone marrow donation, and uptake exceeded initial projections without putting significant financial strain on AHS.

**Conflict of Interest:** All funding provided as in-kind support through Alberta Health Services

**POS-533**

**ASSOCIATION OF END-STAGE RENAL DISEASE WITH MORTALITY IN COVID-19 POSITIVE PATIENTS- A SYSTEMATIC REVIEW AND META-ANALYSIS**

KUMAR, A1, Chinnadurai, R2, Ponnusamy, A2

1Farmington HS, Senior, Farmington Hls, United States; 2Royal Preston Hospital, Department of Renal Medicine, Preston, United Kingdom

**Introduction:** End-stage renal disease (ESRD) patients are a high-risk group in the COVID-19 pandemic due to their associated comorbidities. Several observational studies have highlighted a higher mortality rate in COVID-19 positive patients with ESRD. We conducted a systematic review and meta-analysis on studies comparing the association of ESRD on mortality in COVID-19 positive patients.

**Methods:** Two authors (AK & RC) independently conducted a systematic literature search from three major electronic databases (PUBMED, Scopus and Google Scholar) on all observational studies on COVID-19 infection and mortality in ESRD patients using PRISMA guidelines. The search criteria used included “COVID-19 dialysis” and “COVID-19 + ESRD” (figure 1). The meta-analysis was conducted on studies showing an association of ESRD with mortality using Review Manager 5.4 software (Cochrane collaboration).

**Results:** From a total of 1605 studies published between January 2020 and October 2020, three observational studies investigating the association of ESRD on mortality were identified to be suitable for inclusion in the meta-analysis (1–3). The three studies included has a total of 11,419 patients (ESRD-10,912 and non-ESRD-10,912). The mean age of the total population included was 65 years, with a predominance of males (57%). Meta-analysis showed a strong association of ESRD with mortality in hospitalized COVID-19 positive patients (RR 1.38 [1.20, 1.53], p = 0.002; I2: 84%).

**Conclusions:** This meta-analysis shows ESRD as a strong risk factor associated with mortality in hospitalized COVID-19 positive patients. Further studies are warranted to conduct a meta-regression analysis and tease out the independent association of ESRD with mortality.

**References:**

**POS-534**

**TRAJECTORIES OF CLINICAL AND LABORATORY CHARACTERISTICS ASSOCIATED WITH COVID-19 IN HEMODIALYSIS PATIENTS BY SURVIVAL**

Lasky, R1, Chaudhuri, S2, Jiao, Y1, Larkin MS, J1, Monaghan, C1, Winter, A1, Raimann, J2, Nerl, L1, Kotanko, P3,5, Hymes, J1, Lee, S3, Usuyiat, L1, Kooman, J1, Massey F1, F5

1Fresenius Medical Care- Global Medical Office, Applied Advanced Analytics, Waltham, United States; 2Fresenius Medical Care Deutschland GmbH, Clinical & Data Intelligence Systems - Advanced Analytics, Bad Homburg, Germany; 3Renal Research Institute, Research Division, New York, United States; 4Fresenius Medical Care Deutschland GmbH, Clinical & Data Intelligence Systems - Advanced Analytics, Bad Homburg, Germany; 5Icahn School of Medicine at Mount Sinai, Nephrology, New York, United States; 6Fresenius Medical Care AG & Co. KGaA, Global Medical Office, Bad Homburg, Germany

**Introduction:** We evaluated the trajectories of clinical and laboratory assessments associated with COVID-19 in hemodialysis (HD) patients who survived or died within 30 days after suspicion. For comparison, we also evaluated consistent trajectories before suspicion in patients tested for SARS-CoV-2 who were found to be COVID-19 negative.

**Methods:** We used data from adult (age ≥18 years) HD patients treated at a national dialysis network (Fresenius Kidney Care, Waltham, MA) in the United States who received RT-PCR testing to investigate suspicion of a SARS-CoV-2 infection between 01 May and 01 Sep 2020. Suspicion of SARS-CoV-2 infection was determined at presentation by active signs and symptoms of a flu-like illness. We excluded data from patients under investigation for SARS-CoV-2 who did not have a documented RT-PCR result, which included asymptomatic patients who were exposed to someone with known COVID-19 and were monitored for symptoms. Using an exploratory analysis design, we computed mean daily values for an array of variables 90 days before the first date of suspicion. Nonparametric smoothing splines were used to fit data for individual trajectories and estimate the mean change over time since suspicion of SARS-CoV-2 in patients who were confirmed by RT-PCR test to be positive or negative for COVID-19. Among COVID-19 positive patients, we stratified data for those who survived or died within 30 days of suspicion; trajectories were plotted 90 days after suspicion in