Randomized Clinical Trial on the Long-Term Efficacy and Safety of Lumasiran in Patients With Primary Hyperoxaluria Type 1

Sally A. Hulton, MD, Jaap W. Groothoff, MD, PhD, Yaacov Frishberg, MD, Michael J. Koren, MD, J. Scott Overcash, MD, Anne-Laure Sellier-Leclerc, MD, Hadas Shasha-Lavsky, MD, Jeffrey M. Saland, MD, Wesley Hayes, MBChir, Daniella Magen, MD, Shabbir H. Moochhala, MB, ChB, PhD, Martin Coenen, MD, Eva Simkova, MD, Sander F. Garrelfs, MD, David J. Sas, DO, Kristin A. Meliambro, MD, Taylor Ngo, MPH, Marianne T. Sweetser, MD, PhD, Bahru A. Habtemariam, PharmD, John M. Gansner, MD, PhD, Tracy L. McGregor, MD, John C. Lieske, MD

PII: S2468-0249(21)01591-6
DOI: https://doi.org/10.1016/j.ekir.2021.12.001
Reference: EKIR 1700

To appear in: Kidney International Reports

Received Date: 12 November 2021
Accepted Date: 3 December 2021

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Inc. on behalf of the International Society of Nephrology.
Randomized Clinical Trial on the Long-Term Efficacy and Safety of Lumasiran in Patients With Primary Hyperoxaluria Type 1

Sally A. Hulton, MD1, Jaap W. Groothoff, MD, PhD2, Yaacov Frishberg, MD3, Michael J. Koren, MD4, J. Scott Overcash, MD5, Anne-Laure Seller-Leclerc, MD6, Hadas Shasha-Lavsky, MD7, Jeffrey M. Saland, MD8, Wesley Hayes, MBBCh9, Daniella Magen, MD10, Shabbir H. Moochhala, MB, ChB, PhD11, Martin Coenen, MD12, Eva Simkova, MD13, Sander F. Garrelfs, MD2, David J. Sas, DO14, Kristin A. Meliambro, MD8, Taylor Ngo, MPH15, Marianne T. Sweetser, MD, PhD15, Bahru A. Habtemariam, PharmD15, John M. Gansner, MD, PhD15, Tracy L. McGregor, MD15, John C. Lieske, MD16

1Department of Nephrology, Birmingham Women’s and Children’s Hospital, Birmingham, UK; 2Department of Pediatric Nephrology, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; 3Division of Pediatric Nephrology, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel; 4Jacksonville Center for Clinical Research, Jacksonville, FL, USA; 5Velocity Clinical Research, San Diego, CA, USA; 6Hôpital Femme Mère Enfant and Centre d’Investigation Clinique Inserm, Hospices Civils de Lyon, ERKnet, Bron, France; 7Pediatric Nephrology Unit, Galilee Medical Center and Azrieli Faculty of Medicine, Bar-Ilan University, Nahariya, Israel; 8Icahn School of Medicine at Mount Sinai, New York, NY, USA; 9Department of Pediatric Nephrology, Great Ormond Street Hospital, London, UK; 10Pediatric Nephrology Institute, Rambam Health Care Campus, Haifa, Israel; 11UCL Department of Renal Medicine, Royal Free Hospital, London, UK; 12Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; 13Al Jalila Children’s Hospital, Dubai, UAE; 14Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA; 15Alnylam Pharmaceuticals, Cambridge, MA, USA; 16Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA

Correspondence: Dr Sally-Anne Hulton, Department of Nephrology, Birmingham Women’s and Children's Hospital NHS Foundation Trust, Steelhouse Lane, Birmingham
B4 6NH, UK. Fax: 0121 333 9231. Tel: 0121 333 9228. E-mail: sally.hulton@bch.nhs.uk.

Funding: This study was funded by Alnylam Pharmaceuticals.

Running headline (Character limit: 50 including spaces; character count: 49):
Lumasiran for PH1: ILLUMINATE-A 12-month analysis

Word limit: 4,000 words including abstract (excluding references, tables/figures).
Word count: 3,716 words; Abstract: 250 words; Tables: 2; Figures: 8; References: 25;
Supplemental Material: 4 figures
ABSTRACT

Introduction

Primary hyperoxaluria type 1 (PH1) is a rare genetic disease caused by hepatic overproduction of oxalate, leading to kidney stones, nephrocalcinosis, kidney failure, and systemic oxalosis. In the 6-month double-blind period of ILLUMINATE-A, a Phase 3, randomized, placebo-controlled trial in patients with PH1 ≥6 years old, treatment with lumasiran, an RNA interference therapeutic, led to substantial reductions in urinary oxalate (UOx).

Methods

We report data through Month 12 in the extension period of ILLUMINATE-A, including patients who continued lumasiran (lumasiran/lumasiran) or crossed over from placebo to lumasiran (placebo/lumasiran).

Results

In the lumasiran/lumasiran group (N=24), the reduction in 24-hour UOx was sustained through Month 12 (mean reduction from baseline, 66.9% at Month 6; 64.1% at Month 12). The placebo/lumasiran group (N=13) showed a similar time course and magnitude of 24-hour UOx reduction (mean reduction, 57.3%) after 6 months of lumasiran. Kidney stone event rates appeared to be lower after 6 months of lumasiran in both groups compared with the 12 months prior to consent, and this reduction was maintained at Month 12 in the lumasiran/lumasiran group. At study start, 71% of patients in the lumasiran/lumasiran group and 92% in the placebo/lumasiran group had
nephrocalcinosis. Nephrocalcinosis grade improved after 6 months of lumasiran in the lumasiran/lumasiran and placebo/lumasiran groups (13% and 8% of patients, respectively). After an additional 6 months of lumasiran, 46% of patients demonstrated improvement in nephrocalcinosis grade within the lumasiran/lumasiran group. eGFR remained stable during the course of lumasiran treatment. The most common adverse events related to lumasiran were mild, transient, injection-site reactions.

Conclusion

Long-term lumasiran treatment enabled sustained lowering of UOx with acceptable safety and encouraging results on clinical outcomes.

Keywords (Limit: 6 keywords): Lumasiran, nephrocalcinosis, phase 3 clinical trial, primary hyperoxaluria type 1, RNA interference, urinary oxalate
Introduction

Primary hyperoxaluria type 1 (PH1) is a rare, progressive, genetic disease characterized by overproduction of hepatic oxalate due to mutations in the AGXT gene, which encodes the enzyme alanine–glyoxylate aminotransferase (AGT).1,2 AGT converts the oxalate precursor glyoxylate to glycine. With absent or reduced AGT activity, glyoxylate is oxidized to oxalate, a toxic metabolite largely excreted by the kidneys.1

PH1 is associated with high morbidity and mortality in all age groups due to hepatic oxalate overproduction.1,3,4 In the kidneys, excess oxalate combines with calcium to form insoluble calcium oxalate crystals. This can lead to recurrent kidney stones, which, along with their associated hospitalizations and interventional procedures, are a major cause of morbidity.1,5 In addition, calcium oxalate crystals can aggregate within the tubular lumen and adhere to the apical membrane of tubular cells; the tubular cells can then internalize the calcium oxalate crystals, resulting in inflammation, nephrocalcinosis, and progressive kidney damage.1 As kidney function deteriorates, renal excretion of oxalate is reduced, resulting in increased plasma oxalate, which in turn leads to systemic oxalosis.1 Devastating multiorgan damage from systemic oxalosis occurs when insoluble calcium oxalate crystals are deposited in extrarenal tissues, such as blood vessels, bone, heart, eye, bone marrow, and skin.1 Without treatment, death from complications of oxalosis and/or kidney failure can occur.1,3
Management options for PH1 have been limited. Hyperhydration, consisting of daily fluid intake of 2–3 liters/m² body surface area (BSA), and calcium oxalate crystallization inhibitors such as citrate may reduce the intrarenal precipitation of calcium oxalate crystals but do not address the underlying cause of oxalate overproduction.

Pyridoxine can reduce urinary oxalate excretion but is effective in a subset of patients with PH1. Approximately half of patients with PH1 progress to kidney failure by early adulthood, and nearly all by age 60 years. Once kidney function is severely impaired, intensive hemodialysis (4–6 times per week) with or without peritoneal dialysis is often employed to clear oxalate from blood, but it is time-consuming and generally inadequate to prevent systemic accumulation of oxalate. To date, liver transplantation has been the only metabolic cure for PH1, but is associated with significant morbidity and mortality. Dual liver–kidney transplantation is frequently performed to both address the metabolic defect in the liver and restore lost kidney function. Since a substantial reduction in urinary oxalate (UOx) and plasma oxalate is expected to confer clinical benefit in patients with PH1, therapies that can reduce the production of hepatic oxalate are essential to address the underlying cause of PH1.

Lumasiran is an RNA interference (RNAi) therapeutic that was approved in November 2020 by the US Food and Drug Administration (FDA) for the treatment of PH1 to lower UOx levels in pediatric and adult patients and by the European Commission for the treatment of PH1 in all age groups. Lumasiran is designed to reduce hepatic oxalate overproduction by targeting the messenger RNA of glycolate oxidase (GO), encoded by HAO1. Reduced levels of GO decrease the amount of glyoxylate, the immediate
precursor of oxalate, thereby reducing hepatic oxalate production while increasing concentrations of a readily excreted precursor, glycolate.11-13 In the Phase 3 ILLUMINATE-A trial, 39 patients age \(\geq 6 \) years with PH1 and an estimated glomerular filtration rate (eGFR) \(\geq 30 \text{ mL/min/1.73m}^2 \) were randomly assigned to lumasiran or placebo. At the end of the 6-month double-blind period (DBP), patients treated with lumasiran had a significant reduction in 24-hour UOx excretion compared with placebo (least-squares mean difference, \(-53.5\%\); \(P < 0.001 \)), meeting the primary endpoint.14 All hierarchically tested secondary endpoints were met, including additional measures of urinary and plasma oxalate. Lumasiran had an acceptable safety profile; the main safety finding was mild, transient, injection-site reactions (ISRs), which did not result in treatment discontinuation.14

Here, we report data through Month 12 in the extension period (EP) of ILLUMINATE-A, including patients who, after the 6-month DBP, either continued lumasiran or crossed over from placebo to lumasiran.

Methods

Study design and patients

ILLUMINATE-A (ClinicalTrials.gov number, NCT03681184; EudraCT number: 2018-001981-40) is a 60-month study evaluating the efficacy and safety of lumasiran in children and adults with PH1 at 16 sites in 8 countries (France, Germany, Israel, The Netherlands, Switzerland, United Arab Emirates, United Kingdom, and United States).
The study protocol was developed by the sponsor, Alnylam Pharmaceuticals, and has been published.14

Briefly, eligible patients14 were ≥6 years old with genetically confirmed PH1, eGFR ≥30 mL/min/1.73m2, and 24-hour UOx excretion ≥0.70 mmol/24h/1.73m2. The study includes a 6-month, randomized, placebo-controlled, DBP14 followed by a 54-month EP (Figure S1). During the 6-month DBP, patients were randomized (2:1) to receive lumasiran or placebo by subcutaneous injection.14 Lumasiran (3.0 mg per kilogram of body weight) or placebo was administered once monthly for three doses, followed by maintenance doses given once every 3 months beginning 1 month after the last loading dose. Investigators, patients, and sponsor were blinded through the end of the DBP. During the EP, investigators and patients were blinded until the last patient completed the assessments at the Month 9 visit. All patients entering the EP initially received blinded monthly treatment: patients randomized to placebo received loading doses of lumasiran 3.0 mg/kg at Months 6, 7, and 8, and patients randomized to lumasiran received a maintenance dose of lumasiran 3.0 mg/kg at Month 6 and placebo at Months 7 and 8. From Month 9 and beyond, all patients received lumasiran 3.0 mg/kg every 3 months (maintenance dosing) (Figure S1). All drug administration and study visits were scheduled based on 28-day months.

The study was approved by central and local institutional review boards or ethics committees and conducted in accordance with Good Clinical Practice guidelines and the provisions of the Declaration of Helsinki. All patients or their legal guardians
provided written informed consent. Patients or their legal guardians were free to
discontinue study drug and/or stop participation in the study at any time and for any
reason. The investigator or the sponsor could stop a patient’s participation in the study
at any time if this was considered to be in the patient’s best interest. Detailed stopping
rules are provided in the protocol.

Outcome measures and safety assessments in the EP

Efficacy outcomes assessed in the EP included the secondary endpoints of change
from baseline (percent and absolute) in 24-hour UOx excretion, 24-hour UOx:creatinine
ratios, and eGFR. Exploratory endpoints included change in urinary and plasma
glycolate, change in the rate of kidney stone events, change in nephrocalcinosis
assessed by kidney ultrasound, change in UOx:creatinine ratios as assessed in spot
urine collections, and frequency of anti-drug antibodies (ADAs). Change from baseline
to Month 12 (percent and absolute) in total plasma oxalate, proportion of patients with
24-hour UOx ≤1.5 × ULN in the EP, and change in nephrocalcinosis in age subgroups
(<18 years and ≥18 years at consent) were evaluated in post hoc analyses. Safety
assessments included monitoring of adverse events (AEs), clinical laboratory
assessments, vital signs, 12-lead electrocardiography, and physical examination. AEs
were coded according to the Medical Dictionary for Regulatory Activities Version 21.1.

Urine and blood samples were collected for measurement of oxalate and glycolate with
a validated liquid chromatography-tandem mass spectrometry assay. The kidney stone
event rate was calculated as the total number of kidney stone events divided by the total
patient exposure time (events per person-year). A kidney stone event was defined as an event that included at least one of the following: visit to a healthcare provider (eg, outpatient clinic, urgent care, emergency department, procedure) because of a kidney stone; medication for renal colic; stone passage; or macroscopic hematuria due to a kidney stone. Historical and prospectively documented kidney stone events were defined in the same way. Nephrocalcinosis was assessed by kidney ultrasound scans centrally read by a radiologist at baseline, Month 6, and Month 12. Due to the COVID-19 pandemic, the protocol was updated to extend the window for kidney ultrasound scans up to 7 months after each protocol-specified visit. The degree of medullary nephrocalcinosis in each kidney was graded on a validated, standardized, 4-point scale. Changes in the grade of nephrocalcinosis were grouped into 4 categories of overall change, accounting for both kidneys: no change (both kidneys), improving (both kidneys improving or one kidney improving and one no change), worsening (both kidneys worsening or one kidney worsening and one no change), and indeterminate (one kidney improving and one worsening). Two patients who were randomized to lumasiran did not have valid kidney ultrasounds at baseline and were excluded from the nephrocalcinosis analysis, and one patient who was initially randomized to placebo and crossed over to receive lumasiran did not have a kidney ultrasound before the first dose of lumasiran at Month 6 and was excluded from the Month 12 nephrocalcinosis analysis. ADAs (IgG, IgM) against lumasiran were evaluated in plasma at baseline and Months 1, 3, 6, 7, 9, and 12. ADA assessments were conducted by Charles River Laboratories Montreal ULC (Senneville, Quebec, Canada) using a validated enzyme-linked immunoassay.
Statistical analyses

The current analysis was completed using data through May 1, 2020, when all active study patients had completed their Month 12 visit. Efficacy and safety analyses were conducted in the all lumasiran-treated set, defined as all patients who received any amount of lumasiran, and analyzed according to whether patients received lumasiran in the DBP before receiving lumasiran in the EP (lumasiran/lumasiran group), or initially received placebo in the DBP and crossed over to lumasiran in the EP (placebo/lumasiran group). Baseline for the all lumasiran-treated set was defined as the last non-missing value(s) prior to the first dose of lumasiran. For figures of percent change from baseline and actual values over time, study baseline is defined as the last non-missing value(s) prior to the study drug. The plasma oxalate analysis set, defined as all patients who received study drug and had a baseline plasma oxalate level \(\geq 1.5 \times \) the lower limit of quantitation, was used to evaluate change in plasma oxalate. The lower limit of quantitation of the plasma oxalate assay was 5.55 \(\mu \text{mol/L} \). Values below the lower limit of quantitation were assigned a value of 5.55 \(\mu \text{mol/L} \). Cumulative safety data from the first dose of lumasiran through May 1, 2020, are reported. Formal statistical hypothesis testing was performed on the primary and secondary efficacy endpoints evaluated during the DBP\(^{14} \); all endpoints in the present analysis were summarized using descriptive statistics.
Results

Patients

Of 39 patients randomized between January 2019 and May 2019, 24 of 26 patients initially randomized to receive lumasiran continued to receive lumasiran in the EP (lumasiran/lumasiran group), and 13 of 13 patients initially randomized to receive placebo crossed over to receive lumasiran (placebo/lumasiran group). One patient withdrew from the study during the DBP and 1 patient discontinued treatment, completed the DBP, and did not enter the EP (Figure 1). In the current analysis, the mean (range) cumulative lumasiran exposure was 9.9 (2.8-15.1) calendar months. Three patients (2 in the lumasiran/lumasiran group and 1 in the placebo/lumasiran group) had 1 missing dose of lumasiran. Baseline demographic and disease characteristics were generally balanced between continuous lumasiran and placebo crossover groups (Table 1).

Efficacy

Urinary and plasma oxalate

Long-term treatment with lumasiran led to sustained reduction in 24-hour UOx (Figure 2A and 2B). In the lumasiran/lumasiran group, mean (SEM) percent reduction from baseline in 24-hour UOx was 66.9% (3.1) at Month 6 and 64.1% (3.3) at Month 12. The placebo/lumasiran group had a mean (SEM) percent reduction of 57.3% (4.9) at Month 12 after 6 months of lumasiran treatment. The placebo/lumasiran group demonstrated a time course and magnitude of 24-hour UOx reduction similar to that of the patients in the lumasiran/lumasiran group after the first 6 months of lumasiran (Figure 2A and 2B).
The proportion of patients achieving near-normalization (≤1.5 × ULN) or normalization (≤ULN) of 24-hour UOx excretion was also maintained with long-term lumasiran treatment. As shown in Figure 3, 84.0% of patients in the lumasiran/lumasiran group achieved near-normalization or normalization of 24-hour UOx at Month 6, and 87.5% did so at Month 12. In the placebo/lumasiran group, 76.9% of patients achieved near-normalization or normalization of 24-hour UOx at Month 12 after receiving 6 months of lumasiran treatment, a proportion comparable to that in the lumasiran/lumasiran group at Month 6.

The reductions in 24-hour UOx:creatinine ratios from baseline were sustained in the lumasiran/lumasiran group, with a mean (SEM) of 66.2% (2.8) after 6 months of treatment and 62.9% (3.1) after 12 months of treatment. In the placebo/lumasiran group, 24-hour UOx:creatinine ratios were reduced by a mean (SEM) of 54.3% (4.7) after 6 months of lumasiran treatment (Figure S2a). UOx:creatinine ratios in spot urine collections showed similar results (Figure S2b).

Patients initially randomized to lumasiran (lumasiran/lumasiran group) maintained their reduction from baseline in plasma oxalate at Month 6 and Month 12 (mean [SEM] reduction of 36.9% [4.9] and 35.0% [6.1], respectively) (Figure 4). Those initially randomized to placebo who crossed over to lumasiran (placebo/lumasiran group) showed a similar time course and magnitude of plasma oxalate reduction (mean [SEM] reduction after 6 months of lumasiran treatment of 48.9% [5.1]). eGFR was similar in the
lumasiran/lumasiran and placebo/lumasiran groups and remained stable during the course of lumasiran treatment (Figure 5).

Plasma and urinary glycolate

Plasma glycolate (Figure 6) initially increased and then plateaued and remained stable with up to 12 months of lumasiran treatment in the lumasiran/lumasiran group. A similar trajectory was observed in the placebo/lumasiran group after initiation of lumasiran treatment. Changes in 24-hour urinary glycolate:creatinine ratios were consistent with those observed in plasma glycolate (Figure S3).

Kidney stone events

Reported historical kidney stone event rates in the lumasiran/lumasiran group were higher than in the placebo/lumasiran group. Kidney stone event rates recalled in the 12 months prior to consent appeared to mirror those during the relatively short screening period (up to 2 months): 3.19 (95% confidence interval [CI], 2.57 to 3.96) vs 2.70 (95% CI, 1.41 to 5.19) per person-year, respectively, in the lumasiran/lumasiran group; 0.54 (95% CI, 0.26 to 1.13) vs 0.00 (95% CI, 0.00 to 2.15) per person-year, respectively, in the placebo/lumasiran group.

In the lumasiran/lumasiran group, the kidney stone event rate appeared to be lower during the 6-month DBP relative to that during the 12 months prior to consent, and this reduction persisted through Month 12 after an additional 6 months of lumasiran treatment (Figure 7A and 7B). In the placebo/lumasiran group, the kidney stone event
rate during the 6 months of placebo treatment was similar to the rate reported for the 12 months prior to consent. After patients crossed over from placebo to lumasiran, the kidney stone event rate appeared to decrease compared with both the historical recall period as well as the placebo treatment period (Figure 7A and 7B).

Nephrocalcinosis

At study start, 71% (17/24) of patients in the lumasiran/lumasiran group and 92% (12/13) in the placebo/lumasiran group had nephrocalcinosis based on kidney ultrasounds. In the lumasiran/lumasiran group, nephrocalcinosis improved in 13% (3/24) of patients and remained stable in 83% (20/24) at Month 6 (Figure 8). Continued treatment with an additional 6 months of lumasiran resulted in more patients exhibiting improvement: at Month 12, 46% of patients (11/24) had improved nephrocalcinosis (8 bilateral, 3 unilateral) and 13% (3/24) had worsening (1 bilateral, 2 unilateral) as compared with baseline (Figure 8). In the placebo/lumasiran group, nephrocalcinosis improved in 8% (1/12; unilateral), remained stable in 75% (9/12), and worsened in 8% (1/12; unilateral) at Month 12 compared with Month 6 before the start of lumasiran treatment in these patients (Figure 8).

Of all patients with valid ultrasounds and nephrocalcinosis at baseline, 15% (4/27) and 79% (11/14) showed improvement after 6 and 12 months of treatment, respectively. Of all patients with valid ultrasounds and no nephrocalcinosis at baseline, 100% (7/7) had no change after 6 months of treatment; 25% (1/4) developed nephrocalcinosis and 75% (3/4) had no change after 12 months of treatment.
Overall, nephrocalcinosis improved or remained stable in the majority of patients treated with lumasiran, in both patients age <18 years and those age ≥18 years at consent (Figure S4).

Frequency of ADAs

No patients tested positive for ADAs in the EP. One patient tested positive for ADAs (with a low titer [1:50]) at Month 6, with no observable effect on efficacy or safety. Subsequent samples were negative.

Safety

Safety outcomes as of the data cutoff are shown in Table 2. AEs were reported in 33 (85%) patients; the majority of AEs were mild in severity. One patient had a serious AE of urosepsis (severe) during the EP that was considered not related to study drug. There were no treatment interruptions or discontinuations related to lumasiran, and no deaths were reported. The most frequently reported AEs (≥10% incidence) were ISRs, abdominal pain, headache, rhinitis, and upper respiratory infection (Table 2). The most common AEs related to lumasiran were mild, transient ISRs, with erythema, pain, pruritus, and swelling at the injection site as the most common symptoms. No clinically relevant changes in laboratory measures (including liver function tests), vital signs, and electrocardiograms related to lumasiran were observed. Overall, the safety profile of lumasiran was acceptable.
Discussion

Excess oxalate, the toxic metabolite in PH1, can lead to recurrent kidney stones, nephrocalcinosis, progressive chronic kidney disease, and multiorgan damage from systemic oxalosis. Substantial reduction in hepatic oxalate production is expected to preserve kidney function and confer long-term clinical benefit in patients with PH1. Treatment with lumasiran previously demonstrated a significant reduction in UOx excretion compared with placebo in the 6-month DBP of ILLUMINATE-A. The current findings demonstrate the long-term efficacy and safety of lumasiran through Month 12 in the EP of ILLUMINATE-A. Patients in the lumasiran/lumasiran group demonstrated a sustained reduction from baseline in UOx and plasma oxalate through Month 12. Patients in the placebo/lumasiran group achieved a reduction in UOx and plasma oxalate after 6 months of lumasiran treatment that replicated the effect of lumasiran observed in the 6-month DBP, confirming that the results were robust and reproducible. After administration of lumasiran, plasma glycolate levels initially increased and then plateaued in both groups, consistent with a reduction in hepatic GO activity. There are no known metabolic consequences of the elevated concentrations of glycolate in blood or urine. In case reports of patients with GO deficiency, elevated plasma and urinary glycolate concentrations have been reported without apparent adverse clinical consequences.

Clinical outcomes after lumasiran treatment are encouraging. Kidney function, as measured by eGFR, remained stable during lumasiran treatment. Kidney stone event
rates in the lumasiran/lumasiran group appeared to be lower during the first 6 months of
lumasiran treatment when compared with historical recall data in the 12 months prior to
patient consent, and this decrease was maintained during an additional 6 months of
treatment. Due to the short follow-up time, we cannot rule out that the kidney stone
events occurring after the start of lumasiran treatment might have originated from pre-
existing kidney stones in situ. The reported historical kidney stone event rate in the
lumasiran/lumasiran group was higher compared with the placebo/lumasiran group.
Because treatment randomization was not stratified by historical kidney stone events,
some degree of imbalance may occur in a study with a small number of patients.
Historical kidney stone events are limited by the retrospective nature of recall data, but
the historical rates in this study were corroborated by those observed during the
screening period in both the placebo/lumasiran and lumasiran/lumasiran groups.
Additionally, in the placebo/lumasiran group, historical kidney stone event rates were
similar to event rates from baseline to Month 6 during placebo administration. As a
whole, this suggests that there was no differential recall bias between the groups and
that historical recall data are a reasonable comparator for kidney stone event rates
captured during the study.

Development of nephrocalcinosis, an early, progressive disease manifestation,1,3,4 is
associated with an increased risk of kidney failure in patients with PH1.21 Spontaneous
improvement in nephrocalcinosis is not expected in older patients with PH1 on a stable
management regimen; however, cases of stabilization or improvement in
nephrocalcinosis have been reported with normalization of UOx levels in infants and
young children 3–8 years after liver transplantation. In the ILLUMINATE-A study, most patients treated with lumasiran had improved or stable nephrocalcinosis grade, and the percentage of patients experiencing unilateral and bilateral improvement increased over time. Changes in the severity of nephrocalcinosis were evaluated by noninvasive ultrasounds, assessed by a central radiologist using a validated semi-quantitative scale, at pre-specified, frequent, time points. Because the grading scale used was previously validated only in children and is not commonly used in clinical practice, we conducted a post-hoc subgroup analysis to evaluate nephrocalcinosis by age and found that our method showed changes in nephrocalcinosis in both children and adults.

Both change in the rate of kidney stone events and change in nephrocalcinosis assessed by kidney ultrasound were exploratory endpoints in this study. Longer follow-up is needed to further evaluate the effect of lumasiran on kidney stones and nephrocalcinosis.

Lumasiran demonstrated an acceptable safety profile. The most common AEs related to lumasiran treatment were ISRs, all of which were mild and transient. The cumulative safety profile of lumasiran was consistent with that observed in the DBP. One limitation of this study is that patients age <6 years were excluded; however, this age group is being studied in the ongoing ILLUMINATE-B trial (NCT03905694). The magnitude of oxalate reduction reported here for children age ≥6 years and adults in
ILLUMINATE-A is consistent with that reported in infants and children age <6 years of age in ILLUMINATE-B (spot UOx:creatinine ratio least-squares mean reduction from baseline to Month 6 of 72.0% in lumasiran-treated patients).25 In addition, patients with an eGFR <30 mL/min/1.73m2 were excluded from this study; however, this patient population is being studied in the ongoing ILLUMINATE-C trial (NCT04152200). The placebo-controlled period of ILLUMINATE-A was limited to 6 months. All patients will continue to receive open-label lumasiran in the EP and be monitored for efficacy and safety over time.

In conclusion, this Phase 3 trial showed that 12 months of lumasiran treatment had sustained efficacy with an acceptable safety profile in patients with PH1. In addition, the patients who crossed over from placebo to lumasiran treatment recapitulated the efficacy profile observed in the original treatment cohort, demonstrating the robust therapeutic benefit of lumasiran. Lumasiran enabled sustained lowering of UOx levels to normal or near normal and demonstrated encouraging results on clinical outcomes. Efficacy and safety data of lumasiran will continue to be collected in the EP.

Disclosure

Sally A. Hulton: travel expenses to participate in clinical research meetings, consultancy fee from Advisory Board, and consultancy fees paid to Birmingham Children’s Hospital Renal Research Fund from Alnylam Pharmaceuticals, and other from Dicerna Pharmaceuticals and Chiesi Pharmaceuticals.
Jaap W. Groothoff: consultancy fees from Alnylam Pharmaceuticals and study grants from Alnylam Pharmaceuticals, Dicerna Pharmaceuticals, and uniQure Pharmaceuticals.

Yaacov Frishberg: consultancy fees from Alnylam Pharmaceuticals and membership in the safety review committee.

Michael J. Koren: employee of Jacksonville Center for Clinical Research, which provides research and consulting services to pharmaceutical companies, government, and other industries.

J. Scott Overcash: institutional research funding from Alnylam Pharmaceuticals.

Anne-Laure Sellier-Leclerc: consultancy fees from Alnylam Pharmaceuticals and Dicerna Pharmaceuticals, and principal investigator for research funded by OxThera.

Hadas Shasha-Lavsky: principal investigator for Alnylam Pharmaceuticals; travel and accommodation expenses from Alnylam Pharmaceuticals to attend international investigators’ meetings.

Jeffrey M. Saland: grants, personal fees, and non-financial support from Alnylam Pharmaceuticals.

Wesley Hayes: travel and accommodation expenses from Alnylam Pharmaceuticals to attend an international investigators’ meeting.

Daniella Magen: research funding, consultancy fees, and non-financial support from Alnylam Pharmaceuticals.

Shabbir H. Moochhala: consultancy fees from Allena Pharmaceuticals, Alnylam Pharmaceuticals, and Dicerna Pharmaceuticals, and is a principal investigator for research funded by OxThera.
Martin Coenen: principal investigator for Alnylam Pharmaceuticals.

Eva Simkova: principal investigator for Alnylam Pharmaceuticals; travel and accommodation expenses from Alnylam Pharmaceuticals to attend international investigators' meeting.

Sander F. Garrelfs: non-financial support and grants from Alnylam Pharmaceuticals, and grants from Dicerna Pharmaceuticals.

David J. Sas: grants and other from Alnylam Pharmaceuticals, and personal fees from Advicenne.

Kristin A. Meliambro: nothing to disclose.

Taylor Ngo, Marianne T. Sweetser, John M. Gansner: employees of Alnylam Pharmaceuticals and hold shares in Alnylam Pharmaceuticals.

Tracy L. McGregor, Bahru A. Habtemariam: former employees of Alnylam Pharmaceuticals and hold shares in Alnylam Pharmaceuticals.

John C. Lieske: grants from Alnylam Pharmaceuticals, Dicerna Pharmaceuticals, Retrophin, OxThera, and Siemens, as well as other from Novobiome and Orfan-Bridgebio, and grants and other from Allena and Synlogic.

Data Sharing Statement

Because of the sensitive nature of the data collected for this study, the dataset will not be made available to other researchers.
Acknowledgements

Dr Sally Hulton carried out research through the U.K. NIHR/Wellcome Trust Birmingham Clinical Research Facility. The views expressed in the manuscript are those of the authors and not necessarily those of the U.K. National Health Service, the National Institute for Health Research, or the Department of Health. Medical writing and editorial assistance were provided by Ana Camejo, PhD, from Alnylam Pharmaceuticals, and Jinling Wu, MD, PhD, and Stephanie Leinbach, PhD, both from Peloton Advantage, LLC, an OPEN Health company, in accordance with Good Publication Practice (GPP3) guidelines and funded by Alnylam Pharmaceuticals.

Supplementary Material

CONSORT Statement

Author Contributions

Figure S1. ILLUMINATE-A Study Design

Figure S2. Percent Change From Baseline in (a) 24-Hour UOx:Creatinine Ratios and (b) Spot UOx:Creatinine Ratios

Figure S3. 24-Hour Urinary Glycolate:Creatinine Ratios

Figure S4. Nephrocalcinosis Change From Baseline in (a) Patients Age <18 Years and (b) Patients Age ≥18 Years

ILLUMINATE-A Collaborators
References

25. Deschênes G, Cochat P, Magen D, et al. ILLUMINATE-B, a phase 3 open-label study to evaluate lumasiran, an RNAi therapeutic, in young children with primary
hyperoxaluria type 1 (PH1) [oral presentation]. Presented at: Annual Meeting of the American Society of Nephrology; October 22-25, 2020.
Table 1. Baseline Demographic and Clinical Characteristics^a

<table>
<thead>
<tr>
<th>Baseline characteristic</th>
<th>Placebo/Lumasiran (N=13)</th>
<th>Lumasiran/Lumasiran (N=26)</th>
<th>All Lumasiran Treated (N=39)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age at consent (range), y</td>
<td>11.0 (6–60)</td>
<td>16.5 (6–47)</td>
<td>14.0 (6–60)</td>
</tr>
<tr>
<td>Age category at consent, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 to <18 y</td>
<td>8 (62)</td>
<td>14 (54)</td>
<td>22 (56)</td>
</tr>
<tr>
<td>18 to <65 y</td>
<td>5 (38)</td>
<td>12 (46)</td>
<td>17 (44)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>5 (38)</td>
<td>8 (31)</td>
<td>13 (33)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>3 (23)</td>
<td>3 (12)</td>
<td>6 (15)</td>
</tr>
<tr>
<td>White</td>
<td>9 (69)</td>
<td>21 (81)</td>
<td>30 (77)</td>
</tr>
<tr>
<td>Other</td>
<td>1 (8)</td>
<td>2 (8)</td>
<td>3 (8)</td>
</tr>
<tr>
<td>Geographic region, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td>8 (62)</td>
<td>10 (38)</td>
<td>18 (46)</td>
</tr>
<tr>
<td>Middle East</td>
<td>3 (23)</td>
<td>5 (19)</td>
<td>8 (21)</td>
</tr>
<tr>
<td>North America</td>
<td>2 (15)</td>
<td>11 (42)</td>
<td>13 (33)</td>
</tr>
<tr>
<td>Pyridoxine use, n (%)</td>
<td>9 (69)</td>
<td>13 (50)</td>
<td>22 (56)</td>
</tr>
<tr>
<td>Mean (SD) 24-hour UOx excretion, mmol/24h/1.73m<sup>2b</sup></td>
<td>1.63 (0.67)</td>
<td>1.84 (0.60)</td>
<td>1.77 (0.62)</td>
</tr>
<tr>
<td>Mean (SD) plasma oxalate, µmol/L<sup>c</sup></td>
<td>19.3 (9.5)</td>
<td>14.8 (7.6)</td>
<td>16.3 (8.4)</td>
</tr>
</tbody>
</table>

^a Data are numbers of patients, unless otherwise indicated.
Kidney function

<table>
<thead>
<tr>
<th></th>
<th>Mean (SD) eGFR, mL/min/1.73m²</th>
<th>≥90 mL/min/1.73m², n (%)</th>
<th>60 to <90 mL/min/1.73m², n (%)</th>
<th>30 to <60 mL/min/1.73m², n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>78.8 (30.0)</td>
<td>5 (38)</td>
<td>3 (23)</td>
<td>5 (38)</td>
</tr>
<tr>
<td></td>
<td>83.0 (25.5)</td>
<td>9 (35)</td>
<td>13 (50)</td>
<td>4 (15)</td>
</tr>
<tr>
<td></td>
<td>81.6 (26.8)</td>
<td>14 (36)</td>
<td>16 (41)</td>
<td>9 (23)</td>
</tr>
</tbody>
</table>

*aBaseline characteristics prior to the first dose of lumasiran are reported.

bULN is 0.514 mmol/24h/1.73m² (1 mmol/24h/1.73m² = 90 mg/24h/1.73m²).

cULN = 12.11 µmol/L.

eGFR, estimated glomerular filtration rate; SD, standard deviation; ULN, upper limit of normal; UOx, urinary oxalate.
Table 2. Safety Overview in Patients With PH1 During Lumasiran Treatment

<table>
<thead>
<tr>
<th>Event, n (%)</th>
<th>Placebo/Lumasiran (N=13)</th>
<th>Lumasiran/Lumasiran (N=26)</th>
<th>All Lumasiran (N=39)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any AE</td>
<td>9 (69)</td>
<td>24 (92)</td>
<td>33 (85)</td>
</tr>
<tr>
<td>Serious AE<sup>b</sup></td>
<td>0</td>
<td>1 (4)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>Severe AE<sup>b</sup></td>
<td>0</td>
<td>1 (4)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>AE leading to discontinuation of study treatment<sup>c</sup></td>
<td>0</td>
<td>1 (4)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>AE occurring in ≥10% of patients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injection-site reactions<sup>d</sup></td>
<td>5 (39)</td>
<td>11 (42)</td>
<td>16 (41)</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>1 (8)</td>
<td>6 (23)</td>
<td>7 (18)</td>
</tr>
<tr>
<td>Headache</td>
<td>0</td>
<td>4 (15)</td>
<td>4 (10)</td>
</tr>
<tr>
<td>Rhinitis</td>
<td>2 (15)</td>
<td>2 (8)</td>
<td>4 (10)</td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>1 (8)</td>
<td>3 (12)</td>
<td>4 (10)</td>
</tr>
<tr>
<td>Death</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

^aSafety data from first dose of lumasiran to data cutoff date of May 1, 2020.

^bUrosepsis, considered not related to study drug by the investigator.

^cFatigue and disturbance in attention, considered not related to lumasiran by the investigator.

^dIncludes AEs of injection site reaction, injection site pain, injection site erythema, and injection site discomfort.

AE, adverse event; PH1, primary hyperoxaluria type 1.
Figure 1. Patient Disposition

Participation stopped by parent/guardian due to the patient’s inability to comply with protocol-specific testing; patient did not complete 6-month DBP.

Discontinued treatment for adverse events (unrelated to treatment) of fatigue and disturbance in attention; completed 6-month DBP, but did not enter EP.

DBP, double-blind period; EP, extension period.

Figure 2. Change in 24-Hour Urinary Oxalate

a. Percent Change

Data are mean ± SEM. Percent change at each visit was calculated using the study baseline.

BL, baseline; BSA, body surface area; M, month; SEM, standard error of mean; UOx, urinary oxalate.

b. 24-Hour Urinary Oxalate Excretion

Data are mean ± SEM of observed values. Dotted line represents the upper limit of normal of 0.514 mmol/24h/1.73m² (1 mmol/24h/1.73m² = 90 mg/24h/1.73m²) for 24-hour UOx excretion.

BL, baseline; BSA, body surface area; M, month; SEM, standard error of mean; UOx, urinary oxalate.
Figure 3. Proportion of Patients With 24-Hour Urinary Oxalate Level ≤1.5 × ULN

^Patients initially randomized to placebo

ULN, upper limit of normal. ULN is 0.514 mmol/24h/1.73m² (1 mmol/24h/1.73m² = 90 mg/24h/1.73m²).

Figure 4. Plasma Oxalate

Data are mean ± SEM of observed values. Dark grey dotted line represents the upper limit of normal of 12.11 µmol/L for plasma oxalate. Light grey dotted line represents the lower limit of quantitation of the plasma oxalate assay at 5.55 µmol/L; values below the lower limit of quantitation were assigned a value of 5.55 µmol/L.

BL, baseline; M, month; SEM, standard error of mean.

Figure 5. eGFR^a

Data are mean ± SEM of observed values.

BL, baseline; eGFR, estimated glomerular filtration rate; M, month; SEM, standard error of mean; W, week.
eGFR was calculated based on the Modification of Diet in Renal Disease (MDRD) formula for patients ≥18 years of age and the Schwartz Bedside Formula for patients <18 years of age at screening.

Figure 6. Plasma Glycolate
Data are mean ± SEM of observed values.
BL, baseline; M, month; SEM, standard error of mean.

Figure 7. Kidney Stone Events
a. Kidney Stone Event Rates
A kidney stone event (either historical event or event that occurred during the trial) is defined as an event that includes at least one of the following: visit to healthcare provider because of a kidney stone, medication for renal colic, stone passage, or macroscopic hematuria due to a kidney stone.
Patient-reported history of kidney stone events.

b. Kidney Stone Events by Patient
Each line represents one patient. Each tick mark indicates one kidney stone event. The timing for the historical events (prior 12 months) was not documented; kidney stone events portrayed in the figure are not drawn based on when each
event occurred. aPatients 1 and 2 discontinued treatment or withdrew from the study during the 6-month double-blind period and did not receive lumasiran in the extension period. SCR, screening.

Figure 8. Nephrocalcinosis Change From Baseline

aAfter the first 6 months of treatment for patients originally randomized to lumasiran. Data not available (N/A) for 1 patient who did not have kidney ultrasound after 6 months of lumasiran treatment.

bAfter 12 months of treatment for patients originally randomized to lumasiran. Data N/A for 4 patients who did not have kidney ultrasound after 12 months of lumasiran treatment, for 1 patient who discontinued treatment, and for 1 patient who withdrew from the study.

cAfter 6 months of placebo treatment for patients originally randomized to placebo. Data N/A for 1 patient who had kidney ultrasound at Month 6, but the images were not adequate for grading nephrocalcinosis.

dAfter 6 months of lumasiran treatment for patients originally randomized to placebo who crossed over to lumasiran at Month 6. Data N/A for 1 patient who did not have kidney ultrasound after 6 months of lumasiran treatment.
Assessed for eligibility (n=52)

Excluded (n=13)
• Did not meet inclusion criteria (n=13)

Enrolled (n=39)

Allocated to placebo (n=13)
• Received placebo (n=13)

Completed 6-month DBP (n=13)

Entered EP and crossed over to lumasiran (n=13)

Allocated to lumasiran (n=26)
• Received lumasiran (n=26)

Discontinued lumasiran (n=2)
• Withdrew consent (n=1)\(^a\)
• Adverse event (n=1)\(^b\)

Completed 6-month DBP (n=25)

Entered EP and continued lumasiran (n=24)
Assessed for eligibility (n=52)

Excluded (n=13)
 - Did not meet inclusion criteria (n=13)

Enrolled (n=39)

Allocated to placebo (n=13)
 - Received placebo (n=13)

Completed 6-month DBP (n=13)

Entered EP and crossed over to lumasiran (n=13)

Allocated to lumasiran (n=26)
 - Received lumasiran (n=26)

Discontinued lumasiran (n=2)
 - Withdrawed consent (n=1)\(^a\)
 - Adverse event (n=1)\(^b\)

Completed 6-month DBP (n=25)

Entered EP and continued lumasiran (n=24)